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Question 1. (Total marks: 10) 

(a) What is a stochastic process? (2 marks) 

(b) Classify the stochastic processes according to parameter space and state-space using 

suitable examples. (8 marks) 

Question 2. (Total marks: 10) 

(a) Define martingale. (2 marks) 

(b) Differentiate between super- and sub-martingales. (3 marks) 

(c) What is gambler’s ruin problem? (5 marks) 

Question 3. (Total marks: 20) 

(a) Show that the transition probability matrix along with the initial distribution completely 

specifies the probability distribution of a discrete-time Markov chain. (10 marks) 

(b) Suppose that the probability of a dry day (state 0) following a rainy day (state 1) is 1/3 and 

that probability of a rainy day following a dry day is 1/2. Develop a two-state transition 

probability matrix of the Markov chain. Given that May 1, 2022 is a dry day, find the 

probability that May 3, 2022 is a dry day. (10 marks) 

Question 4. (Total marks: 10) 

(a) Differentiate between persistent and transient states. (3 marks) 

(b) Classify the states of the Markov chain whose transition probability matrix is given below: 

(7 marks) 

0 1 2 

: 0 1 0 
5 1/2 0 1/2 

0 1 O 

Question 5. (Total marks: 10) 

(a) Find the steady-state probabilities of the Markov chain whose one-step transition 

probability matrix is given below: (8 marks) 

1/2 0 1/2 
0 0 2/3 1/3 

2 [2 1/2 0 |
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(b) What is stationary distribution of a Markov chain? (2 marks) 

Question 6. (Total marks:20) 

(a) What is a Poisson process? (5 marks) 

(b) Suppose that the customers arrive at a service facility in accordance with a Poisson process 

with mean rate of 3 per minute. Then find the probability that during an interval of 2 minutes: 

(i) exactly 4 customers arrive (ii) greater than 4 customers arrive 

(iii) less than 4 customers arrive 

( e~© =0.00248) (10 marks) 
(c) Prove that if the arrivals occur in accordance with a Poisson process then the interarrival- 

times are exponentially distributed. (5 marks) 

Question 7. (Total marks: 20) 

(a) Derive the Chapman-Kolmogorov equations for continuous-time Markov chain. (10 marks) 

(b) Derive Kolmogorov forward differential equation. (10 marks) 
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